JOURNAL of Soil Biology and Ecology
Vol.43 (2)-2023 : PP 63-69
Vol.43 (2)-2023 : PP 63-69
Author: R. PRAVEEN, R.ASHWIN AND D.J. BAGYARAJ
Abstract :
Substrate based inoculum production using traditional “Pot Culture” technique contains all AMF structures, and is highly infective and common method of AM fungal production and pure culture maintenance. Aim of the present study was to investigate the microorganisms associated (Bacteria, Fungi, Actinomycetes, Nitrogen fixers, P-solubilizers) with pot cultures of 10 AM fungal cultures like Acaulospora laevis, Gigaspora margarita, Funneliformis caledonius, Rhizophagus fasciculatus, Rhizophagus intraradices, Ambispora leptoticha, Glomus macrocarpum, Funneliformis mosseae, Glomus bagyarajii and Entrophospora etunicata (=Claroideoglomus etunicatum) through quantitative analysis. The highest bacterial population (37×107 and 35×107) were associated with pots of G. margarita and R. fasciculatus respectively. The highest fungal population was observed in pots of Glomus macrocarpum (87×105) and R. fasciculatus (82×105). The F. caledonius and R. fasciculatus pot cultures harboured the highest actinomycetes population. The highest N-fixing and phosphate solubilizing bacteria (92×104 and 54×104) were isolated from the pots of R. fasciculatus and G. margarita respectively. However, the highest dehydrogenase activity was observed in the sample collected from pots of R. fasciculatus. These findings highlight the distinct preferences and proliferation rates of different microbial groups in the pot cultures of different AM fungal species.
References :
Amora-Lazcano, E. and Azcón, R., 1997. Response of sulphur cycling microorganisms to arbuscular mycorrhizal fungi in the rhizosphere of maize. Appl. Soil Ecol., 6(3): 217-222.
Ashwin, R., Bagyaraj, D.J. and Mohan Raju, B., 2023. Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus. Fungal Biol. Biotech. 10:10. DOI: 10.1186/s40694-023-00157-y
Bagyaraj, D. J., Ashwin, R. and Praveen, R., 2023. Arbuscular mycorrhizal fungi and their role in soil health. In: Somasundaram J., Dalal, R.C. and Lal, R. (eds.) Sustainable Soil Management: Beyond Food Production. Cambridge Scholars Publishing, Newcastle, UK, pp. 272-292.
Gu, Y., Wag, P., and Kong, C., 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soils influenced by allelopathic rice variety. Eur. J. Soil Biol., 45: 436–441.
Johansson, J.F., Paul, L.R. and Finlay, R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol., 48(1): 1-13.
Kalapchieva, S., Tringovska, I., Bozhinova, R., Kosev, V. and Hristeva, T., 2023. Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. Int. J. Mol. Sci., 24(2):1119-1128.
Ma, J., Ma, Y., Wei, Z., Wu, J., Sun, C., Yang, J., Liu, L., Liao, H., Chen, T. and Huang, J., 2021. Effects of arbuscular mycorrhizal fungi symbiosis on microbial diversity and enzyme activities in the rhizosphere soil of Artemisia annua. Soil Sci. Soc. Am. J., 85(3): 703-716.
Mariela, F.P., Pável, M.E.I., Manuel, S.R.L., Jesús, F.G.M. and Reyes, L.O., 2016. Dehydrogenase and mycorrhizal colonization: Tools for monitoring agrosystem soil quality. Appl. Soil Ecol., 100: 144-153.7
Moeskops, B., Buchan, D., Sleutel, S., Herawaty, L., Husen, E., Saraswati, R., Setyorini, D., and De Neve, S., 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol., 45: 112–120.
Nacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T.W. and Boonlue, S., 2020. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci. Reports, 10(1): 491-496.
Ohlinger R. 1996. Dehydrogenase activity with the substrate TTC. In: Schinner F, Ohlinger R, Kandler E, Margesin R, editors. Methods in Soil Biology. Berlin: Springer Verlag, pp. 241-243.
Qin, Y., Zhang, W., Feng, Z., Feng, G., Zhu, H. and Yao, Q., 2022. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil Ecol., 170:1042-1094.
Ranadev, P., Ashwin, R., Anuroopa, N. and D.J. Bagyaraj., 2022. Symbiotic response of fodder cowpea (Vigna unguiculata L.) and field bean (Lablab purpureus L.) with different arbuscular mycorrhizal fungi. KAVAKA, 58(3): 34-38.
Sangwan, S. and Prasanna, R., 2022. Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb. Ecol., 84(1): 1-10.
Sarathambal, C., Dinesh, R., Srinivasan, V., Sheeja, T.E., Jeeva, V. and Manzoor, M., 2022. Changes in bacterial diversity and composition in response to co-inoculation of arbuscular mycorrhizae and zinc-solubilizing bacteria in turmeric rhizosphere. Curr Microbiol, 79: 1-9.
Schreiner, R.P., Mihara, K.L., McDaniel, H. and Bethlenfalvay, G.J., 1997. Mycorrhizal fungi influence plant and soil functions and interactions. Pl. soil, 188: 199-209.
Secilia, J. and Bagyaraj, D.J., 1987. Bacteria and actinomycetes associated with pot cultures of VA mycorrhizal fungi. Can. J. Microbiol., 33: 1069-1073.
Secilia, J. and Bagyaraj, D.J., 1988. Fungi associated with pot cultures of VA mycorrhiza. Trans. Br. Mycol. Soc., 90: 117-119.
Tedersoo, L., Bahram, M. and Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Sci., 367(64): 1223-1229.
Wang, B., Xiao, Q., Geng, X., Lin, K., Li, Z., Li, Y., Chen, J. and Li, X., 2024. Arbuscular mycorrhizal fungi alter rhizosphere bacterial diversity, network stability and function of lettuce in barren soil. Sci. Hortic., 323:1125-1133.
Xu, Y., Chen Z, Li X, Tan J, Liu F and Wu J., 2023. Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth. Funct. Ecol., 37(3): 664-75.