JOURNAL of Soil Biology and Ecology
Vol.45 (2)-2025 : PP. 95-101.
Vol.45 (2)-2025 : PP. 95-101.
Azospirillum: multifaceted benefits beyond biological nitrogen fixation
Author:
M. K. MURALI AND D. J. BAGYARAJ
Abstract:
Azospirillum, a prominent plant-growth-promoting rhizobacterium (PGPR), has emerged as one of the most extensively studied microbial inoculants for sustainable agriculture. Although widely known for its associative biological nitrogen fixation (BNF), research over the past three decades has revealed that the ecological and agronomic contributions of Azospirillum extend far beyond nitrogen input. Azospirillum synthesizes a broad spectrum of phytohormones such as indole-3-acetic acid, gibberellins, cytokinins, and ACC deaminase that profoundly influence plant growth regulation, root system architecture, and developmental processes. In addition, the bacterium significantly improves nutrient acquisition through mechanisms including phosphate solubilization, siderophore-mediated iron mobilization, and enhanced root-mediated nutrient uptake. Azospirillum also plays a central role in mitigating abiotic stresses and heavy metal toxicity by enhancing antioxidant activities while simultaneously contributing to biotic stress resistance through induced systemic resistance and enhanced production of defense-related metabolites. Beyond plant–microbe interactions, Azospirillum positively influences soil health by improving microbial diversity, enzymatic activity, and soil structure. Collectively, these multifunctional attributes underscore the significance of Azospirillum as a key microbial inoculant for sustainable, low-input, and climate-resilient agriculture.
References :
Ambreetha, S. and Balachandar, D., 2019. Rhizobacteria-mediated root architectural improvement: a hidden potential for agricultural sustainability. In: Plant growth promoting rhizobacteria for agricultural sustainability . (Eds.) Kumar, A., Meena, V., Springer, Singapore. pp.111-128.
Bernados, L.C., Espineli, J.P., Anarna, J.A. and Aggangan, N.S., 2024. Increasing tomato productivity through integrated nutrient sources and inoculation with arbuscular mycorrhizal fungi and Azospirillum spp. Horticulturae, 10(10): 1056.
Cassan, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C.L.N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F.O. and de Souza, E., 2020. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils., 56(4): 461-479.
Ejaz, S., Batool, S., Anjum, M.A., Naz, S., Qayyum, M.F., Naqqash, T., Shah, K.H. and Ali, S., 2020. Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Sci. Hortic., 270: 109401.
Fukami, J., Ollero, F.J., de la Osa, C., Valderrama-Fernandez, R., Nogueira, M.A., Megías, M. and Hungria, M., 2018. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol., 200(8): 1191-1203.
Galindo, F.S., Pagliari, P.H., Buzetti, S., Rodrigues, W.L., Fernandes, G.C., Biagini, A.L.C., Marega, E.M.R., Tavanti, R.F.R., Jalal, A. and Teixeira Filho, M.C.M., 2021. Corn shoot and grain nutrient uptake affected by silicon application combined with Azospirillum brasilense inoculation and nitrogen rates. J. Plant Nutr., 45(2): 168-184.
Galindo, F.S., Rodrigues, W.L., Fernandes, G.C., Boleta, E.H.M., Jalal, A., Rosa, P.A.L., Buzetti, S., Lavres, J. and Teixeira Filho, M.C.M., 2022. Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Eur. J. Agron., 134: 126471.
Giri, B.R., Chattaraj, S., Rath, S., Pattnaik, M.M., Mitra, D. and Thatoi, H., 2025. Unveiling the molecular mechanism of Azospirillum in plant growth promotion. Bacteria, 4(3): 36.
Goel, R. and Singh, R., 2025. Growth promotion and response of staple crops to inoculation with Azospirillum: A review. Curr. Trends Biotechnol. Pharm., 19: 61.
Hafez, M., Abo El-Ezz, S.F., Popov, A.I. and Rashad, M., 2021. Organic amendments combined with plant growth-promoting rhizobacteria (Azospirillum brasilense) as an eco-friendly by-product to remediate and enhance the fertility of saline sodic-soils in Egypt. Commun. Soil Sci. Plant Anal., 52(12): 1416-1433.
Kour, D., Khan, S.S., Kour, H., Kaur, T., Devi, R., Rai, A.K. and Yadav, A.N., 2024. ACC deaminase producing phytomicrobiomes for amelioration of abiotic stresses in plants for agricultural sustainability. J. Plant Growth Regul., 43(4): 963-985.
Murali, M.K. and Navi, V., 2024. Assessing the impact of elite indigenous Azospirillum strains on growth of wheat (Triticum aestivum L.) across varied nitrogen regimes. Mysore J. Agric. Sci., 58(4): 175-184.
Naseem, H., Ahsan, M., Shahid, M.A. and Khan, N., 2018. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol., 58(12): 1009-1022.
Pedrinho, A., Mendes, L.W., do Rêgo Barros, F.M., Bossolani, J.W., Kühn, T.N., Quecine, M.C. and Andreote, F.D., 2024. The interplay between Azospirillum brasilense and the native bacterial communities in the soil and rhizosphere of maize (Zea mays L.). Soil Biol. Biochem., 189: 109292.
Pelagio-Flores, R., Ravelo-Ortega, G., García-Pineda, E. and López-Bucio, J., 2025. A century of Azospirillum: plant growth promotion and agricultural promise. Plant Signal Behav., 20(1): 2551609.
Pham, T.M., Bui, X.D., Le, T.M., Nguyen, M.L., Trinh, D.M., Phuong, N.T.D., Khoo, K.S., Chew, K.W. and Show, P.L., 2022. Isolation of indole-3-acetic acid-producing Azospirillum brasilense from Vietnamese wet rice: co-immobilization of isolate and microalgae as a sustainable biorefinery. J. Biotechnol., 349: 12-20.
Saranraj, P., Al-Tawaha, A.R.M., Sivasakthivelan, P., Al-Tawiah, A.R.M., Amala, K., Thangadurai, D. and Sangeetha, J., 2022. Azospirillum bioinoculant technology: past to current knowledge and future prospects. In: Organic farming for sustainable development, CRC Press, Boca Raton, pp.51-76.
Sivasakthivelan, P., Saranraj, P., Al-Tawaha, A.R.M., Amala, K., Al Tawaha, A.R., Thangadurai, D., Sangeetha, J., Rauf, A., Khalid, S., Alsultan, W. and Alwedyan, M., 2021. Adaptation of Azospirillum to stress conditions: A review. Adv. Environ. Biol., 15(4): 1-6.
Suhameena, B., Devi, S., Gowri, R. and Kumar, S.D., 2020. Utilization of Azospirillum as a Biofertilizer–an overview. Int. J. Pharm. Sci. Rev. Res., 62(2): 141-145.
Sun, W., Shahrajabian, M.H. and Wang, N., 2025. A study of the different strains of the genus Azospirillum spp. on increasing productivity and stress resilience in plants. Plants, 14(2): 267.
Zeffa, D.M., Perini, L.J., Silva, M.B., de Sousa, N.V., Scapim, C.A., Oliveira, A.L.M.D., Amaral Júnior, A.T.D. and Azeredo Gonçalves, L.S., 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. Plos one, 14(4): e0215332.